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Overview

1. What are MHD waves and
instabilities?

2. MHD Waves

Linearisation, Dispersion Relations,
Waves in a Uniform Medium, Non-
Uniform Media, Resonances, Phase

Mixing, Cylinders, Seismology

3. MHD Instabilities
What do we mean by instability?
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A few different types (tube instabilities,

thermal instabilities, Rayleigh-Taylor
and Kelvin-Helmholtz instabilities)

4. Concluding Thoughts
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Waves and Instabilities - What are they?

Force Balance:

0=3JxB—-VP+ pg

If the system Is perturbed, the forces will change. Do they act to
restore the equilibrium (waves) or not (instability).

Waves Instabilities




Waves and Instabilities

How can we describe MHD waves and instabilities
mathematically?

. Initial equilibrium Want to find a relationship between the
growth rate, (W, and the wave number, k, of

. Linearise MHD equations the perturbation.

. 2
. Small perturbation to the w” >0 Waves

system e.g.
Ae’i (k- I‘—wt) Forces oppose any displacement from the

equilibrium, creating oscillatory behaviour.

. See what happens!
w2 <0  Instabilities

. AS perturpatlons Ca_n grow Forces enhance any displacement from the
exponentially, non-linear equilibrium, creating runaway, exponential

analysis may be required growth.



Understanding MHD Waves - Linear Analysis

We can analyse MHD waves and instabilities mathematically by
considering small perturbations to an initial equilibrium.

B

Magnetic Field B B4 We can linearise the MHD

equations by assuming that

Velocity V =|Vo || V1| products of perturbed
Gas Pressure P =|Py |+ P variables are negligible
e.g.
vensity p =|Po |T|P1 vi XxB1 =0
Equilibrium Small

Quantities Perturbations



Waves in a Uniform Medium B, = B,
Assume a uniform plasma at rest (v = 0) and vo =0
magnetic field aligned in the z direction. Py. po
Ideal MHD equations Linearised equations
dp B op1 o
8t.V-(pv)—O 5 FpoV vy =0
0B 0B,
E—VX(VXB) 5 =V X (v1 X By)
ov . 0
pr =ixB-VP pot =1 x By — VP
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Waves in a Uniform Medium

Assume Fourier components for the perturbations of the form:
Aei(k-r—wt)

and substitute into linearised equations.

— wp1 = pok - v
1. Time derivatives: Pl PO :
Contribute: —w — —> —wB; = k X (Vl X BO)
2. Spatial derivatives: (k x B1) x By
— 3 —_—T —WpPoV] = Plk
V, V°, V X 197y
= . P
Contribute: , . P — (M ) o
ik, ik, ik X PO




Then, algebra and vector

Identities




Dispersion Relations
This algebra allows us to eliminate the perturbed variables to find:

(w2 — k*c cos” 0) (w4 — wk? (cg + 0?4) + ey k* cos? A)|= 0

Bz B
Alfven Speed 6?4 — 0 Sound Speed Cg — 120
0 P0 00

The two brackets provide dispersion relations for Alfven and
magnetoacoustic waves, respectively.

Anisotropy due to

’ 2
Alfven w_ __ 6?4 C082 4

kQ

Magnetoacoustic 2

(fast and slow) 2 =g (G tca) &

1
\/(C? + 6?4)2 — 4c2¢% cos? 0



v, (m/s)

MHD wave modes

Alfven Fast and Slow Magnetoacoustic

Behave like waves on a string. Compressive waves.

For fast/slow wave, density and field strength are perturbed in/out

Incompressible.
P \ of phase.
B
Vv
I

Restoring force is Important Limits

magnetic tension. _
) — () Parallel Propagation Fast and slow waves propagate

Group speed is the as pure Alfvén and slow waves.

Alfvén speed. O s o /2 Perpendicular Propagation Fastest propagation

for fast wave. Slow wave phase speed goes to 0.

Cold Limit No gas pressure so sound speed vanishes. No slow
wave and fast wave propagates isotropically with the Alfvén speed.

_ Low (3 Slow wave confined to propagate along magnetic field lines
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Short transverse length scales

N O n - U n ifo rm M ed i u m - Phase M iXi n g Greater Energy Dissipation
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In fully 3D plasmas, the MHD modes no longer decouple and waves

-
have mixed properties. However, If there is an invariant direction, -
pure Alfvén waves can still exist. L

Alfven Speed Profile _
/nC/’eaS/.n = T T 1 | 1T T 1 | T T 1 | I N - -
Q/‘I/)‘Vé,7 1.0 - 60
\eed ; g i
B . ;\g 0.9 é_ _é § -
VA = 2 ool E )
vV Hop S
e o7E ~ LY
E
0.6 £ = :
= - 20 —
\"} 0'51_:O| | I-O|,5| L O!O L1 0!5 L1 1:.0 _ . .
X (Mm)

OIIIIlIIIIlIIlI'IIIIl

Transverse gradient in the local Alfvén speed. Linear waves 0TS o s 0
confined to individual field lines so out of phase waves on
neighbouring field lines produce increasing small length scales. 3¢ 5 00




Waves - Resonances

Field lines with fixed ends will have natural frequencies.

Oscillatory drivers with power at these frequencies will
efficiently excite resonant standing waves.

Uniform field line - Alfvéen Speed U A

i phie 4 - - e
Ay Y 3 : :
NS S F e .
et . ; ¢ °
The Sun-Earth System - NASA
Vv, (km/s) jp(uAmM™)
274.47 355.61 436.75 517.89 599.03 680.17 761.30 -0.019 -0.013 -0.006 0.000 0.006 0.013 0.019

— l >
Period of fundamental mode for uniform string is twice travel time

21 | 27T TTUA
T — —— Fundamental frequency is: W = — —
U A T l &

Can also excite higher harmonics:

— 0 -\/—\'

_ 27TV A - "
Fundamental First overtone w = Field line resonances in the Earth’s

l Magnetosphere - Wright & Elsden (2020)
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Waves in Cylinders
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Kink Mode
Morton et al. 2012

Coronal Loops observed by TRACE

Often model loops as straight cylinders.
These support many wave modes, including
sausage, kink and higher order ballooning/

fluting modes.

Magnetic tension dominant restoring force.

Weakly compressible kink modes widely
observed in Sun’s atmosphere. They damp
very rapidly despite weak dissipation - why?
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Resonant Absorption

Kink wave:
transverse
oscillation in
coronal loop.

Often

modelled in
straight
topology.

Azimuthal waves
in loop boundary

Many observations of oscillating coronal
loops. Interpreted as kink modes.

Kink speed:

piva, + Pevs,
Pi T Pe

Matches local Alfvén speed in the boundary
of loop -> resonance!

V. —

Energy is efficiently transferred from the
global kink mode to localised azimuthal

Alfvén waves.

Kink wave damps very quickly but no
direct energy dissipation. Can lead to

instability as we shall see....!



Waves - Seismology

Waves can carry information about their source and the
background medium. We can use waves to infer

plasma properties that we cannot measure directly.

Select ray paths for the P-wave phases
from a single
earthquake

Seismology of the Earth’s Interior
IRIS/SAGE
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Inferring rotational profile of the solar
interior using helioseismology
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Waves - Seismology in Practice

Can we used waves to estimate the unknown mass?

EI Standing Mode

Observation

Wave Speed on 1

Stretched String ¢ — \/ .

" Using Copper Wire:

_ _ Standard Wire Gauge: 26
T Tension l/L Mass per unit length Mass per unit length: 0.00146 kg/m
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Standing Mode Observation

Waves - Seismology in Practice




For a uniform string, standing mode period is twice the wave
travel time along the wire. What else do you need to know?

EI Standing Mode

Observation

Wave Speed on 1

Stretched String U=

0 Using Copper Wire:

_ _ Standard Wire Gauge: 26
T Tension l/L Mass per unit length Mass per unit length: 0.00146 kg/m




Instabilities

There are many ways a plasma can be
unstable. This list shows a few of them:

In Solar System Science, we may be
interested in (e.qg.):

R W N 2w SOHO LASCO C2
b RN R YR A NN L 2012/08/31 00:00

Coronal Mass Ejections can be triggered by instabilities - NASA
Tearing mode instability for reconnection

a)Bz=+02nT

100

Convective instability in the solar interior

Kelvin-Helmholtz instability on the flanks
of magnetospheres

o0

Y, RJ

Kink instability as the driver of impulsive
events in the corona

-50
Magnetic buoyancy instability for flux
emergence in the Sun

-100

Day 1, 18:00 UT
Rayleigh-Taylor instability in prominences 2012050V REE 50 0 50
The violent release of energy during solar flares _ _ i
Thermal instabilities for coronal rain can be initiated by instability - NASA KHI in Jovian magnetosphere

Zhang et al. 2017



Waves and Instabilities

How can we describe MHD waves and instabilities
mathematically?

. Initial equilibrium Want to find a relationship between the
growth rate, (W, and the wave number, k, of

. Linearise MHD equations the perturbation.

. 2
. Small perturbation to the w” >0 Waves

system e.g.
Ae’i (k- I‘—wt) Forces oppose any displacement from the

equilibrium, creating oscillatory behaviour.

. See what happens!
w2 <0 Instabilities

. AS perturpatlons Ca_n grow Forces enhance any displacement from the
exponentially, non-linear equilibrium, creating runaway, exponential

analysis may be required growth.



Sausage Instability “ VE

Instabilities In a tube ng

2140

Initial equilibrium (no gravity):

jxB=VP

Q BQ
Consider azimuthal magnetic field: &r) n Decreases
B = B,(R)é, - 2
with axial current:  j = 7, (R)e, S B
G Increases

Magnetic tension balancing gas
pressure force.

SXARRES(

v B~
Decreases
Z 2/40

Initial Conditions Sausage Instability

What happens if the tube is
subject to a small pinch?



Kink Instability

Same Initial Conditions:

Consider azimuthal magnetic field:

B = By(R)ey

with axial current:  j = j,(R)e,

Initial equilibrium (no gravity):

jxB=VP

Magnetic tension balancing gas

pressure force.

What happens if a section of the

tube axis is displaced?
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Kink Instability - Numerical Model
-
o A

/ Yy Driving the Kink
Instability in MHD

simulations
Reid et al. 2018

-3.0

t= 20.0

Impose 3 pairs of counter-rotational drivers at the foot points of magnetic field lines.

These generate twisted magnetic flux tubes. Twist central flux tube at faster rate. Keep rotating and
trigger kink instability. What happens next? How can this drive energy release in the corona?



Kink Instability
2 -
Kink 1nstability in central flux
tube generates small scales ] -
throughout flux tube —>
magnetic reconnection, energy
release and heating. > 0-
Instability 1n the central flux tube _1-
destabilises neighbouring flux
tubes.
—)-
This 1s an example of an MHD
avalanche and can explain how _3 | | | | |
one energy release event can —33 —? -1 0 1 ) 3
trigger many more. f 945 0 X

Kink Instability and MHD avalanches
Reid et al. 2018



Thermal Instability Rain Tracking: OFF

Optically Thin Radiative Losses
(Klimchuk et al. 2008)
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Radiative Loss Function (UJm 8_1)

10—357_
Coronal
0= Temperatures
e o d . . . -
T (K) 1. Thermal conduction typically dominant stabilising
dA term in the corona.

— >0 Radiatively Stable 2. If not, then thermal instability leads to cooling

dl’
3. Pressure decreases, so attracts more plasma due

dA o to pressure forces.
— <0 Radlat“’ely Unstable 4. This leads to more cooling and process continues

df’ until gravity causes condensations to fall as rain.



Rayleigh-Taylor and Kelvin-Helmholtz instabilities

MHD supports standard HD instabilities although the magnetic
fleld can have a stabilising effect due to magnetic tension.

Initial Equilibrium <
Dy 0 P+

() p_ 1t 2z <0, )
zZ ] =
PO P+ it z 2 0.

Py(z) = Ao — pogz

™
Bo = (Bw,()vovo) o O -

(2) Vg, — 1 2 <0,
Veol2) =
o Uy + if 2 Z 0.

vy — 1t 2 <0, _
Uy,0(2) = { . p

Uy + if z Z 0.

v, = 0 (Ij



Linearise equations then some

algebra to find dispersion relation!




Rayleigh-Taylor and Kelvin-Helmholtz instabilities

oy = —1F o = —r- AV =V, —V
p+ + p- py + p- T

1. Advection of oscillatory solution through observer’s rest frame.

Term under the square root determines stability. Stable solutions if > 0, unstable
solutions if < 0.

2. Positive term suppresses instability due to magnetic tension.
3. Negative term drives instability (Rayleigh-Taylor instability).

4. Negative term drives instability (Kelvin-Helmholtz instability).

*Expression has been simplified by normalising density and Alfvén speed of lower region.



Rayleigh-Taylor

Hydrodynamic instability which
forms when a high density fluid
ies above a lower density fluid

Modified in MHD, in particular
by magnetic tension force

Well-studied in solar
prominences.

As with many instabilities,
growth rate reduced by non-
ideal effects such as viscosity.
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Kelvin-Helmholtz instability
Hydrodynamic instability

T T IS

driven by a velocity shear Kelvin-Helmholtz Instability
across an interface. Philippi et al. 2015
Again, modified in MHD, in Density

particular by magnetic 4

tension force

Can develop with an
oscillating velocity shear, £,
e.g. due to out-of-phase
Alfvén waves. 2

Growth rate reduced or 4
suppressed by sheared
magnetic field across
interface.
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KHI in Coronal Loops

Kink wave:
transverse

oscillation in

Sih
() J A
coronal loop. N o
. Deed

1. Foot point driving excites kink mode. Out of phase
2. Correct frequency -> fundamental standing in Cartesian
wave. s _— /' geometry.
3. Energy transferred to azimuthal Alfvén mode. | © \\ © = IZA

4. Radial gradients are unstable to KHI.

DB: data0000.viu

Cycle:0  Time: Driven-diffr
(le-12 kg/m*3) L/2

- 2.509

1.254

0.8360

X KHI in coronal loops
Karampelas et al. 2017

o
| @ ©
Often
modelledin [; Azimuthal waves
straight in loop boundary
topology. g associated with

velocity shear.
Velocity shear is

unstable to KHI.

Instability growth rates are reduced in short
flux tubes (due to magnetic tension),
dissipative regimes (removes energy from

the shear flow) and for twisted magnetic
fields.



Concluding Remarks

The inclusion of a magnetic field in MHD creates a wide
range of new dynamics in comparison to HD systems.

This includes the magnetic field introducing anisotropies.

Both the magnetic tension force and the magnetic
pressure force are important for understanding waves
and 1nstabilities 1n magnetised plasmas.

Linearisation 1s a powerful tool for understanding the
stability of physical systems and describing the response
to small perturbations.

However the Universe 1s non-linear and non-linear
evolution can be important (e.g. instabilities can grow
very quickly!). Can still make progress though with more
sophisticated analytical techniques or numerical models!
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