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Birth of MHD

Existence of
Electromagnetic-Hydrodynamic Waves

I¥ a conducting liquid is placed in a constant mag-
netic field, every motion of the liquid gives rise to
an E.M.F. which produces electric currents. Owing
to the magnetic field, these currents give mechanical
forces which change the state of motion of the liquid.

Thus a kind of combined -electromagnetic-hydro-
dynamic wave is produced which, so far as T know,
has as yet attracted no attention.

The phenomenon may be described by the electro-
dynamic equations
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together with the hydrodynamic equation

dv |

Sg = ¢ 0

where o is the electric conductivity, x the permeability,

@ the mass density of the liquid, ¢ the electric current,
© the velocity of the liquid, and p the pressure.
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Consider the simple case when ¢ = @, = 1 and
the imposed constant magnetic field H, is homo-
geneous and parallel to the z-axis. In order to study
a plane wave we assume that all variables depend
upon the time ¢ and z only. If the velocity v is par-
allel to the z-axis, the current 7 is parallel to the
y-axis and produces a variable magnetic field H’ in
the x-direction, By elementary caleulation we obtain

d’ 4n@ d:*H’

dzr — Hy* dt*’
which means a wave in the direction of the z-axis
with the velocity

Waves of this sort may be of importance in solar
physics. As the sun has a general magnetic field,
and ag solar matter is a good conductor, the conditions
for the existence of electromagnetic-hydrodynamic
waves are satisfied. If in a region of the sun we have
H, = 15 gauss and 9 = 0-005 gm. em.™3, the velocity
of the waves amounts to

V ~ 60 cm, sec.™t.

This is about the velocity with which the sunspot
zone moves towards the equator during the sunspot
cycle. The above values of H, and @ refer to a distance
of about 10** em. below the solar surface where the
original cause of the sunspots may be found. Thus
it is possible that the sunspots are associated with a
magnetic and mechanical disturbance proceeding as
an electromagnetic-hydrodynamic wave.

The matter is further discussed in a paper which
will appear in Arkiv for matematik, astronomi och

fyaik. H. AL¥vVEN.
Kgl. Tekniska Hégskolan,
Stockholm.
Aug. 24.

Alfvén (1942), Nature 150: 405.
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% ~N MHD gives you the big picture.
T N 5 Embodies key physical principles.
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A lot of this week’s talks will use it.
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Fluid equations




Continuity equation (mass conservation)

Mass conservation: Classically, matter is neither created nor destroyed.

Define the mass density as

p(x.1) = lim i—]“f MV, 1) = / / /V o(x.1) AV

Using the 3D Leibnitz theorem with boundary moving with the fluid

], (e m) -

If true for any volume of fluid, then everywhere by conservation

dp
Ot

FV - (pu) =0




Convective derivative

The total time derivative when moving with the fluid is called the
convective derivative. Using the chain rule it is given by

D 0
= Fu -V
Dt 0Ot
Capital D Contribution Contribution
used to signify from local from spatial
special choice changes derivatives

for velocity In time




Momentum equation (Newton’s 2nd law)

Newton's 2nd law: Sum of the forces on object equals its rate
of change of momentum (F = ma). For a fluid:

sum offorcesonV——/// pudV = /// p—dV

by 3D Leibniz theorem
and mass continuity

Consider two types of forces...




Momentum equation (Newton’s 2nd law)

Body forces Contact forces
act within the volume act on the boundary
Introduce F}, as the body If the only contact force Is pressure
force per unit volume. acting normal to the surface, —pn,

the total contact force on VIS

] Frav ([ -wmas= [[] sar

For example, gravity adds

oS M Note: Using a pressure gradient

Fo= lim (= =p8 for contact forces Is dubious, but
oV —0 oV : . .

we’ll save that discussion for later.




Momentum equation (Newton’s 2nd law)

Matching the two sides of Newton’s 2nd law therefore gives

Il fff s

If true for any volume of fluid, then everywhere

Du
— =F, -V
Dy b p




Summary of fluid equations

dp
-V - (pu) =0
Y (pu)
Du
_:F _v rom first law o
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and LTE closure
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Electromagnetism




Maxwell’'s Equations

V-E=" V-B=0
€0
0B 1 OE :
V x E (%—O V x B c‘zat:“‘”

The homogenous equations allow us to use potentials, reducing the
number of variables. The resulting equations look especially great in
4D space-time. However, deriving and understanding MHD goes
better if we use the equations above, which are closer to applications.




Electromagnetic forces (motors)

Electrostatic force per unit volume
Fo = pk

(from Coulomb’s experiments, 1784)

Lorentz force per unit volume from a current
F; = J X B

(from Ampere’s and Faraday’s experiments, 1821-23)
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Ohm’s law for conductors (generators)

For many materials on a lab bench, observe ] = o

B
Induction: u._ VX E = %t

The more general relation
that fixes the paradox is

j=o0(E+v x B)




Electromagnetic energy and Poynting’s theorem (1884)

oU 60E2 B2 1
FV-S=-E-] U = | S=—ExB
Ot ! 2 2110 [0

How is energy converted with Ohm’s law?

j=c(E+vxB) & E=-vxB+2
g
work done
on conductor
:2 o ( -2
E.j=vxB-j-L =v.Bxj-L = v.jxB-L

O o O




Summary of key E.M. results

—— Forces —— Maxwell’s equations
F— o F V- -E= Pe V x E - OB _ 0
C o /OC - EO | 8{; N
. 1 OE
Fr=jxB V-B=0 V x B = Ho)
c? Ot

Poynting’s theorem

2 2 1
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Ohm’s law for a conductor Heating
o -2
E VXB:i Qohmic:]_
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Fluid equations

dp
V:(pu) =0
” (pu)
Du_F v
th_ b P
Dp
— =—ypV.u+(y-1
= Yp (y—=1)0
E.M. equations
P oB
€0 ot
1 E

V-B=0 VXB
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The MHD Approximation

Standard MHD assumes that speeds are much less than c.

Order of Magnitude Analysis

Let [, be a typical length scale, #, a typical time scale, vy ~ [y/1,, and let
E, and B, be typical values of ‘ E ‘ and ‘ B ‘ .

OB E, B,
ot I .

fy
1 g ,
Now compare terms on LHS of V X B p = Up)-
t

1 oK

| Eyl(tyc? o\
- N AR (R N
| V X B | Bo/l() C
MHD Ampére’s law is ] = —V X B (aka. low-frequency Ampeére’s law).

Ho



Fluid equations

dp
ot
Du

—=F, -V
th b P

V-(pu)=0

Dp

—=—ypV-u+(y-1)Q

Dt

Vv

)

E.M. equations

0B
=& V X E A




Fluid equations

dp B
> V-(pu)—O
E—F -V
th_ b P

Dp

=, =~ wVout(r=1)0 \
l

E.M. equations
P oB
€0 ot
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Fluid equations

dp
ot

Du—'xB+ V
th =J P8 P

Dp

R -
= = ypV -u+ (v 1)0

V-(pu)=()

E.M. equations

o oB
(V.E__ VXE+— =0
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Mass continuity equation:

Momentum equation:

Energy equation:

Induction equation:

MHD equations
dp

FV-(pu) =0
” (pu)
Du—'xB+ V
Po, = pg—Vp

Dp

j2
~ =—}/pV-u+(y—1);

0B
E:Vx(uxB)—Vx(anB)
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Induction Equation and R,

The general resistive induction equation is:

0B
Esz(uxB)—Vx(anB).

If the conductivity is constant in space (good luck making that
assumption in reality!), we equivalently have:

0B ,
Ez VX@xB)+nV

-~

VX XB)|  wByly gy .

‘ n V2B ‘ nBy/ls i "

Comparing size of terms:

R, is called the magnetic Reynolds number.
Often, R is huge, e.g. 10%-10'% common in the solar corona.



In a highly conducting fluid,

I d eal M H D the electric field is zero

in the frame of the fluid.

When R, >> 1, use ideal induction equation — =V X(uxB).
[

Alfvén’s Theorem

In iIdeal MHD, the

magnetic flux through  d B
any surface co-moving - H B-dS=0
S S(t;)

with U IS conserved: —
t>

Field Line Conservation

In. ideal MHD, two fluid ele.melnts | BK —
lying on the same magnetic field line

at some initial time always do so #




Magnetic Forces

Momentum equation: P ( Py - (u- V)“) =g XBHpg—Vp

Lorentz force term can be expanded as:

. 1 (BZ> 1
jxB=—(VxB)xB=-V[— |+ —®B-V)B.

Ho 21 Ho
magnetic magnetic
pressure tension

Alternative decomposition, terms perpendicular to B:

, ] B? B? . .
JXB=—(VXB)XB=-V,| — |+ —(b-V)b.
Ho 24 Ho

magnetic magnetic
pressure tension




Example: Magnetic Reconnection

1 v 4

——>  Non-ideal region <

bt

Where is plasma being accelerated?

What'’s special about the non-ideal region?



Force free fields

ou
Momentum equation:  p ( Py - (u - V)u> =jJXB+pg—Vp

P
B2/2//t0 .

Define the plasma beta as the pressure ratio [ :=

Pressure force << magnetic forces when f# < 1 (cold plasma).

Gravity also often negligible, hence seek static equilibria with:
JXB=20.

Force-free magnetic fields have force balance between magnetic
tension and magnetic pressure.



(VXB)XB=0 & VXB=aXx)B
Taking divleadsto B - Va = 0, i.e. a constant along field lines.

Special cases

Potential field, V X B = 0, lowest
magnetic energy given BCs.

Linear force free field, & = const,
lowest magnetic energy given
BCs and magnetic helicity.




Warning: There Be Dragons

The macroscopic derivation shown In this talk
IS generally sound, however...

Formal derivation takes moments of the Boltzmann equation to
obtain multi-fluid equations, then combines into a single fluid model.

Broader Horizons 1: Generalised Ohm'’s law

: | m { i ‘e
E+u><B=J | (ij—V-Pe): e(—J+V-<uj+ju—£)>.

o ne ne? \ ot ne

l[deal MHD remains a good approximation at large scales,
but Hall (and electron pressure) effects often at least as important
as resistivity where ideal MHD breaks down.

Neutrals can also affect Ohm’s law, e.g. Cowling resistivity.



Broader Horizons 2: Internal Forces

ou
p(at | (u-V)u) =jXB+pg—-V-P

Gryomotion of particles around B produces gyrotropic pressure
P=p I+ - p,)bb
—V - P reduces to — V p when collisions make py & p;.

When 4, .. 2 [, (e.g. outer corona, solar wind...) pressure isotropy
m 0

IS a bad approximation. More suitable fluid approaches include:
Braginskii MHD, CGL equations and Landau MHD.

Additionally, some models explicitly treat higher-order moments, or
include gyroradius effects, or have dust, or are relativistic. ..



Summary

Electromagnetism

Magnetohydrodynamics (MHD) describes
dynamics of electrically conducting fluid ~ §
(e.g. plasma) coupled to magnetic field.

Magneto-Hydrodynamics

Fluid dynamics

lou
|[deal MHD when R, := 279 > 1 (“normal”). Field lines “frozen in”.
4

Magnetic forces can be expressed as a sum of magnetic pressure

2ig | Mo
 » B

Magnetic fields are often approximated as force-free, JxX B = 0.

. . B 1
and magnetic tension forces, e.g. j X B = — V(—) +—B-V)B.



- . op
Mass continuity equation: Py V- (pu) =0
. Du |

Momentum equation: th =)JXB+pg—Vp

. Dp j°
Energy equation: —=—yvywwV-u+(yr—1)—

=P (r=1)=
| | oB

Induction equation: E =VXUuXxB)—VX (nV X B)

MHD equations

Mode
than t

ing plasma in a fluid approach can get more complicated
nis, but standard MHD is simple enough to gain valuable

INnsigh

'S, and rich enough to keep you interested for a lifetimel!



