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Pay Attention Because…

MHD gives you the big picture.


Embodies key physical principles.

 

A lot of this week’s talks will use it.



Ingredients



Fluid equations



Continuity equation (mass conservation) 

Define the mass density as

If true for any volume of fluid, then everywhere

Using the 3D Leibnitz theorem with boundary moving with the fluid

by conservation 
of mass

Mass conservation: Classically, matter is neither created nor destroyed.



Convective derivative

The total time derivative when moving with the fluid is called the 
convective derivative. Using the chain rule it is given by 

Capital D 
used to signify 
special choice 

for velocity

Contribution 
from local 
changes 
in time

Contribution 
from spatial 
derivatives



Momentum equation (Newton’s 2nd law) 

Newton's 2nd law: Sum of the forces on object equals its rate 
of change of momentum (F = ma). For a fluid:

Consider two types of forces…

by 3D Leibniz theorem 
and mass continuity



Momentum equation (Newton’s 2nd law) 

For example, gravity adds

Introduce       as the body  
force per unit volume.

Body forces Contact forces

If the only contact force is pressure 
acting normal to the surface,         , 

the total contact force on V is

act within the volume act on the boundary

Note: Using a pressure gradient 
for contact forces is dubious, but 
we’ll save that discussion for later.



Momentum equation (Newton’s 2nd law) 

Matching the two sides of Newton’s 2nd law therefore gives 

If true for any volume of fluid, then everywhere



Summary of fluid equations

From first law of 
thermodynamics  
and LTE closure



Electromagnetism



E B

Div

Curl

Maxwell’s Equations

The homogenous equations allow us to use potentials, reducing the 
number of variables. The resulting equations look especially great in 
4D space-time. However, deriving and understanding MHD goes 
better if we use the equations above, which are closer to applications.



Electromagnetic forces (motors)

Electrostatic force per unit volume

(from Coulomb’s experiments, 1784)

Lorentz force per unit volume from a current

(from Ampère’s and Faraday’s experiments, 1821-23)



Ohm’s law for conductors (generators)

For many materials on a lab bench, observe 

Induction:

The more general relation  
that fixes the paradox is



work done 
on conductor

resistive  
heating

Electromagnetic energy and Poynting’s theorem (1884)

How is energy converted with Ohm’s law?
+



Summary of key E.M. results
Forces Maxwell’s equations

Poynting’s theorem

Ohm’s law for a conductor Heating



 Derivation of  
resistive MHD



Fluid equations

E.M. equations

∂ρ
∂t

+ ∇ ⋅ (ρu) = 0

ρ
Du
Dt

= Fb − ∇p

Dp
Dt

= − γp∇ ⋅ u + (γ − 1) Q

FL = ρcE + j × B E + u × B =
j
σ

QOhmic =
j2

σ

∇ ⋅ E =
ρc

ϵ0

∇ ⋅ B = 0

∇ × E +
∂B
∂t

= 0

∇ × B −
1
c2

∂E
∂t

= μ0j



The MHD Approximation
Standard MHD assumes that speeds are much less than .c

∇ × E +
∂B
∂t

= 0 ⇒
E0

l0
∼

B0

t0
⇒ E0 ∼ v0B0 .

Order of Magnitude Analysis
Let  be a typical length scale,  a typical time scale, , and let 

 and  be typical values of  and .
l0 t0 v0 ∼ l0/t0

E0 B0 E B

Now compare terms on LHS of .∇ × B −
1
c2

∂E
∂t

= μ0j
1
c2

∂E
∂t

|∇ × B |
∼

E0/(t0c2)
B0/l0

∼ ( v0

c )
2

≪ 1.

MHD Ampère’s law is  (aka. low-frequency Ampère’s law).j =
1
μ0

∇ × B



Fluid equations

E.M. equations
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Fluid equations

E.M. equations
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+ ∇ ⋅ (ρu) = 0

ρ
Du
Dt

= Fb − ∇p

Dp
Dt

= − γp∇ ⋅ u + (γ − 1) Q

FL = j × B E + u × B =
j
σ

QOhmic =
j2

σ

∇ ⋅ E =
ρc

ϵ0

∇ ⋅ B = 0

∇ × E +
∂B
∂t

= 0

j =
1
μ0
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Fluid equations

E.M. equations

∂ρ
∂t

+ ∇ ⋅ (ρu) = 0

ρ
Du
Dt

= j × B + ρg − ∇p

Dp
Dt

= − γp∇ ⋅ u + (γ − 1) j2

σ

E + u × B =
j
σ

∇ ⋅ E =
ρc

ϵ0

∇ ⋅ B = 0

∇ × E +
∂B
∂t

= 0

j =
1
μ0

∇ × B( )
( )



MHD equations

j =
1
μ0

∇ × B

∂ρ
∂t

+ ∇ ⋅ (ρu) = 0Mass continuity equation:

ρ
Du
Dt

= j × B + ρg − ∇pMomentum equation:

Dp
Dt

= − γp∇ ⋅ u + (γ − 1) j2

σ
Energy equation:

∂B
∂t

= ∇ × (u × B) − ∇ × (η∇ × B)Induction equation:

η =
1

μ0σ



Exploring MHD



Induction Equation and Rm

∂B
∂t

= ∇ × (u × B) − ∇ × (η∇ × B) .

The general resistive induction equation is:
η =

1
μ0σ

If the conductivity is constant in space (good luck making that 
assumption in reality!), we equivalently have:

∂B
∂t

= ∇ × (u × B) + η∇2B .
advection diffusion

Comparing size of terms:
∇ × (v × B)

η∇2B
∼

u0B0/l0
ηB0/l2

0
∼

l0u0

η
=: Rm .

 is called the magnetic Reynolds number.  
Often,  is huge, e.g. –  common in the solar corona.
Rm

Rm 108 1012



Ideal MHD

When , use ideal induction equation .Rm ≫ 1
∂B
∂t

= ∇ × (u × B)

tB

Field Line Conservation

In ideal MHD, two fluid elements 
lying on the same magnetic field line 
at some initial time always do so 

Alfvén’s Theorem
In ideal MHD, the 
magnetic flux through 
any surface co-moving 
with  is conserved:  u

d
dt ∬S(t)

B ⋅ dS = 0
B

S(t1)

S(t2)

v

In a highly conducting fluid,  
the electric field is zero 
in the frame of the fluid.



Magnetic Forces

ρ ( ∂u
∂t

+ (u ⋅ ∇)u) = j × B + ρg − ∇pMomentum equation:

Lorentz force term can be expanded as:

j × B =
1
μ0

(∇ × B) × B = −∇( B2

2μ0 ) +
1
μ0

(B ⋅ ∇)B .

magnetic 
pressure

magnetic 
tension

Alternative decomposition, terms perpendicular to :B

j × B =
1
μ0

(∇ × B) × B = −∇⊥( B2

2μ0 ) +
B2

μ0
(b̂ ⋅ ∇)b̂ .

magnetic 
pressure

magnetic 
tension



Example: Magnetic Reconnection

Non-ideal region

B

Where is plasma being accelerated?

What’s special about the non-ideal region?

FLFL



Force free fields

ρ ( ∂u
∂t

+ (u ⋅ ∇)u) = j × B + ρg − ∇pMomentum equation:

Define the plasma beta as the pressure ratio β :=
p

B2/2μ0
.

Pressure force  magnetic forces when  (cold plasma).≪ β ≪ 1

j × B = 0 .

Gravity also often negligible, hence seek static equilibria with:

Force-free magnetic fields have force balance between magnetic 
tension and magnetic pressure.



(∇ × B) × B = 0 ⇔ ∇ × B = α(x)B

Taking div leads to , i.e.  constant along field lines.B ⋅ ∇α = 0 α

Special cases

Potential field, , lowest 
magnetic energy given BCs.

∇ × B = 0

Linear force free field, , 
lowest magnetic energy given 
BCs and magnetic helicity.

α = const



Warning: There Be Dragons

The macroscopic derivation shown in this talk  
is generally sound, however…

Formal derivation takes moments of the Boltzmann equation to 
obtain multi-fluid equations, then combines into a single fluid model.

Broader Horizons 1: Generalised Ohm’s law

E + u × B =
j
σ

+
1
ne (j × B − ∇ ⋅ Pe) +

me

ne2 ( ∂j
∂t

+ ∇ ⋅ (uj + ju −
jj
ne )) .

Ideal MHD remains a good approximation at large scales,  
but Hall (and electron pressure) effects often at least as important 
as resistivity where ideal MHD breaks down.

Neutrals can also affect Ohm’s law, e.g. Cowling resistivity.



Broader Horizons 2: Internal Forces

ρ ( ∂u
∂t

+ (u ⋅ ∇)u) = j × B + ρg − ∇ ⋅ P

 reduces to  when collisions make .−∇ ⋅ P −∇p p∥ ≈ p⊥

Gryomotion of particles around  produces gyrotropic pressure B
P = p⊥I + (p∥ − p⊥)b̂b̂

When  (e.g. outer corona, solar wind…) pressure isotropy 
is a bad approximation. More suitable fluid approaches include: 
            Braginskii MHD, CGL equations and Landau MHD.

λmfp ≳ l0

Additionally, some models explicitly treat higher-order moments, or 
include gyroradius effects, or have dust, or are relativistic…



Summary
Magnetohydrodynamics (MHD) describes 
dynamics of electrically conducting fluid 
(e.g. plasma) coupled to magnetic field.

Ideal MHD when  (“normal”). Field lines “frozen in”.Rm :=
l0u0

η
≫ 1

Magnetic forces can be expressed as a sum of magnetic pressure 

and magnetic tension forces, e.g. j × B = − ∇( B2

2μ0 ) +
1
μ0

(B ⋅ ∇)B .

BFL

Magnetic fields are often approximated as force-free, j × B = 0 .

Magneto-Hydrodynamics

Electromagnetism

Fluid dynamics



MHD equations

j =
1
μ0

∇ × B
∂ρ
∂t

+ ∇ ⋅ (ρu) = 0Mass continuity equation:

ρ
Du
Dt

= j × B + ρg − ∇pMomentum equation:

Dp
Dt

= − γp∇ ⋅ u + (γ − 1) j2

σ
Energy equation:

∂B
∂t

= ∇ × (u × B) − ∇ × (η∇ × B)Induction equation:

η =
1

μ0σ

Modelling plasma in a fluid approach can get more complicated 
than this, but standard MHD is simple enough to gain valuable 
insights, and rich enough to keep you interested for a lifetime!


