The Solar Wind，The Heliosphere， and CMEs

Dr Julia E．Stawarz
Northumbria University

Northumbria
University
NEWCASTLE

Parker's Solar Wind Model

\rightarrow Exospheric Solar Wind Models
\rightarrow The Solar Wind Magnetic Field
\rightarrow Early \& Recent Observations of the Solar Wind

Complex/Transient Structure of the Solar Wind

\rightarrow Fast \& Slow Solar Wind
\rightarrow Corotating Interaction Regions
\rightarrow Coronal Mass Ejections
\rightarrow Waves \& Turbulence

The Boundary of the Heliosphere

What is the Solar Wind?

The solar wind is a fast continuous flow of plasma emanating from the Sun \rightarrow Sun's extended atmosphere

What did we know before the space age?

Solar flares often followed several days later by geomagnetic storms
\rightarrow Sun at least intermittently ejecting material

Comet tails are always directed away from the Sun
\rightarrow Radiation pressure? X
\rightarrow Particle flow? \rightarrow requires several
100 km/s flows

The Parker Solar Wind

DYNAMICS OF THE INTERPLANETARY GAS
AND MAGNETIC FIELDS*
E. N. Parker

Enrico Fermi Institute for Nuclear Studies, University of Chicago
Received January 2, 1958
ABSTRACT
 ward in all directions from the sun with velocities of the order of $500-1500 \mathrm{~km} / \mathrm{sec}$. These velocities of $500 \mathrm{~km} / \mathrm{sec}$ and more and the interplanetary densities of 500 ions $/ \mathrm{cm}^{3}\left(10^{14} \mathrm{gm} / \mathrm{sec}\right.$ mass loss from the
 outward-streaming gas draws out the lines of force of the solar magnetic fields so that near the sun the
field is very nearly in a radial direction. Plasma instabilities are expected to result in the thick shell of disordered field (10^{-5} gauss) inclosing the inner solar system, whose presence has already been inferred from cosmic-ray observations.

The Parker Solar Wind

Hydrodynamic Momentum Equation

$$
u_{r} \frac{\partial u_{r}}{\partial r}=\frac{k_{B} T}{m}\left(\frac{1}{u_{r}} \frac{\partial u_{r}}{\partial r}-\frac{2}{r}\right)-\frac{G M_{\odot}}{r^{2}}
$$

DYNAMICS OF THE INTERPLANETARY GAS
AND MAGNETIC FIELDS*

> E. N. Parker

Enrico Fermi Institute for Nuclear Studies, University of Chicago Received January 2, 1958

ABSTRACT
 ward in all directions from the sun with velocities of the order of $500-1500 \mathrm{~km} / \mathrm{sec}$. These velocities of $500 \mathrm{~km} / \mathrm{sec}$ and more and the interplanetary densities of 500 ions $/ \mathrm{cm}^{3}\left(10^{14} \mathrm{gm} / \mathrm{sec}\right.$ mass loss from the sun) follow from the hydrodynamic equations for a $3 \times 10^{\circ}{ }^{\circ} \mathrm{K}$ solar coron. It is suggested that the
outwardstreaming gas draws out the lines of force of the solar magnetic fields so that near the sum the outward-streaming gas draws out the lines of force of the solar magnetic fields so that near the sun the
field is very nearly in a radial direction. Plasma instabilities are expected to result in the thick shell o disordered field (10^{-5} gauss) inclosing the inner solar system, whose presence has already been inferred from cosmic-ray observations.

The Parker Solar Wind

Hydrodynamic Momentum Equation

DYNAMICS OF THE INTERPLANETARY GAS
AND MAGNETIC FIELDS*
E. N. Parker

Enrico Fermi Institute for Nuclear Studies, University of Chicago Received January 2, 1958

ABSTRACT
 ward in all directions from the sun with velocities of the order of $500-1500 \mathrm{~km} / \mathrm{sec}$. These velocities of $500 \mathrm{~km} / \mathrm{sec}$ and more and the interplanetary densities of 500 ions $/ \mathrm{cm}^{3}\left(10^{14} \mathrm{gm} / \mathrm{sec}\right.$ mass loss from the sun) follow from the hydrodynamic equations for a $3 \times 10^{6}{ }^{\circ} \mathrm{K}$ solar corona. It is suggested that the outward-streaming gas draws out the lines of force of the solar magnetic fields so that near the sun the
field is very nearly in a radial direction. Plasma instabilities are expected to result in the thick shell of disordered field (10^{-5} gauss) inclosing the inner solar system, whose presence has already been inferred from cosmic-ray observations.

The Parker Solar Wind

Hydrodynamic Momentum Equation

DYNAMICS OF THE INTERPLANETARY GAS
AND MAGNETIC FIELDS*
E. N. Parker
E. N. Parker

Enrico Fermi Institute for Nuclear Studies, University of Chicago Received January 2, 1958

ABSTRACT
 ward in all directions from the sun with velocities of the order of $500-1500 \mathrm{~km} / \mathrm{sec}$. These velocities of $500 \mathrm{~km} / \mathrm{sec}$ and more and the interplanetary densities of 500 ions $/ \mathrm{cm}^{3}\left(10^{14} \mathrm{gm} / \mathrm{sec}\right.$ mass loss from the sun) follow from the hydrodynamic equations for a $3 \times 10^{\circ}{ }^{\circ} \mathrm{K}$ solar coron. It is suggested that the
outwardstreaming gas draws out the lines of force of the solar magnetic fields so that near the sum the outward-streaming gas draws out the lines of force of the solar magnetic fields so that near the sun the
field is very nearly in a radial direction. Plasma instabilities are expected to result in the thick shell of disordered field (10^{-5} gauss) inclosing the inner solar system, whose presence has already been inferred from cosmic-ray observations.

The Parker Solar Wind

Directly integrating differential equation gives:

$$
\begin{array}{r}
\left(\frac{u_{r}}{c_{S}}\right)^{2}-\ln \left(\frac{u_{r}}{c_{S}}\right)^{2}=4 \ln \left(\frac{r}{r_{c}}\right)+4 \frac{r_{c}}{r}+\underset{\uparrow}{C} \\
\begin{array}{l}
\text { Different families of solutions } \\
\text { depending on constant }
\end{array}
\end{array}
$$

Which solutions are physically plausible?

The Parker Solar Wind

Connections with Astrophysics

Negative solutions describe spherically symmetric accretion

Collisionless Kinetic Model of the Solar Wind

- Lower mass of electrons means electrons are much more mobile than ions
\rightarrow more electrons have escape velocity from Sun
- To maintain quasi-neutrality, an ambipolar electric field is set up in the plasma accelerating the ions

$$
E=-\frac{\nabla P_{e}}{n e}
$$

- By requiring no net current, self-consistent solutions can be found resulting in a super-sonic solar wind \rightarrow in limit of Maxwellian distributions and vanishing electron mass model is consistent with Parker solar wind

Exospheric Solar Wind Model

砢麗 Northumbria
 University NEWCASTLE

The Solar Wind Magnetic Field

What will the magnetic field lines embedded in the solar wind look like?

- Consider the magnetic field to be frozen-in to the hydrodynamic flow
- At solar surface, magnetic foot point rotates with Sun
- Once solar wind plasma leaves Sun, magnetic flux dragged radially outward

Produces Archimedean spiral magnetic
\rightarrow Parker spiral in solar wind context

The Solar Wind Magnetic Field

What will the magnetic field lines embedded in the solar wind look like?
Sun has both inward and outward polarity
magnetic fields that are dragged into solar wind
Current sheet present at interface of two polarities

Solar Wind Observations

Early Solar Wind Observations

Science, 138, 1905-1907 (1962)
The Mission of Mariner II:
Soviet Luna 1-3 \& Venera 1 Made first measurements of
solar wind between 1959-1961

Preliminary Observations
Marcia Neugebauer Conway W. Snyder Jet Propulsion Laboratory, California Institute of Technology, Pasadena

Northumbria
University NEWCASTLE

New Solar Wind Observations

Key Science Objectives

Parker Solar Probe [Fox+ (2016) Space Sci. Rev.]

- Trace the flow of energy that heats the solar corona and accelerates the solar wind

In-situ measurements at distances closer to sun than ever before

Both in-situ and remote sensing observations

- Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind
- Explore mechanisms that accelerate and transport energetic particles

Solar Orbiter [Müllert (2020) A\&A]

- What drives the solar wind and where does the coronal magnetic field originate?
- How do solar transients drive heliospheric variability?
- How do solar eruptions produce energetic particle radiation that fills the heliosphere?
- How does the solar dynamo work and drive connections between the Sun and the heliosphere?

砙酮 Northumbria
 University
 NEWCASTLE

In the Parker (or exospheric) models, asymptotic solar wind speed depends on temperature in the corona

While the slow solar wind can be reasonably accounted for by observed temperatures, the fast solar wind is not

Recent observations from Parker Solar Probe near the Sun, have suggested that interchange reconnection on top of a Parker-like slow solar wind background may account for fast solar wind streams

Multi-Spacecraft Conjunctions

Combined PSP-Solar Orbiter

 In-Situ \& Remote Sensing MeasurementsRadial Alignments Between PSP \& Solar Orbiter
二品 of plasma when accounting for propagation of the plasma!

Complex Solar Wind Structure

University NEWCASTLE

Fast \& Slow Solar Wind Structure

Radial distance \rightarrow Solar Wind Speed

Polar Angle
\rightarrow Solar Latitude

Corotating Interaction Regions

As Sun rotates faster and slower wind can end up ahead or behind each other

Slow ahead of Fast (Corotating Interaction Region) Solar wind compressed between regions of slower and faster wind
\rightarrow can develop into pair of shocks
Fast ahead of Slow (Rarefaction)
Faster wind pulls away from slower wind creating region of depleted particle density

shrus University NEWCASTLE

Coronal Mass Ejections

Magnetic reconnection at Sun release loops of twisted magnetic field that expand into solar wind

Structure

Shock - generated as CME pushes its way through the ambient solar wind

Sheath - region of shocked solar wind, which often contain strong fluctuations and complex structure generated by the shock
Magnetic Cloud - region of intense twisted magnetic field released from the Sun (flux rope)

$$
\rho \frac{\partial \boldsymbol{u}}{\partial t}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}=-\nabla P+\boldsymbol{j} \times \boldsymbol{B} \quad \rightarrow \quad \boldsymbol{j} \times \boldsymbol{B} \sim 0
$$

Small Scale Solar Wind Structure: Turbulence \& Waves

The solar wind is filled with complex multi-scale fluctuations at smaller-scales that are thought to be associated with nonlinear turbulent dynamics

The Boundary of the Heliosphere

Interaction with Interstellar Medium


```
Termination Shock
```

Distance (light years)

Studying the Interaction with the Interstellar Medium

Both Voyager 1 and Voyager 2 have crossed the termination shock and heliopause

Science, 309, 2027-2029 (2005)
Crossing the Termination Shock into the Heliosheath: Magnetic Fields
L. F. Burlaga, ${ }^{1 *}$ N. F. Ness, ${ }^{2}$ M. H. Acuña, ${ }^{1}$ R. P. Lepping, ${ }^{1}$ J. E. P. Connerney, ${ }^{1}$ E. C. Stone, ${ }^{3}$ F. B. McDonald ${ }^{4}$ Voyager 1

Science, 341, 1489-1492 (2013)
In Situ Observations of Interstellar Plasma with Voyager 1
D. A. Gurnett, ${ }^{1}$ W. W Kurth, ${ }^{1}$ L. F. Burlaga, ${ }^{2}$ N. F. Ness ${ }^{3}$

Studying the Interaction with the Interstellar Medium

IBEX mission has measured the heliospheric boundary using energetic neutral atoms

Measures the energy and direction of neutral particles created through charge exchange in the heliosheath

Next generation version of this mission (IMAP) is currently being developed by NASA with a UK contribution

砙酮 Northumbria University NEWCASTLE

Summary

Interplanetary space is filled with a fast flow of plasma emanating from the Sun
Global structure broadly understood using relatively simple Parker Model along with intuition about MHD

A variety of more complex structure is present beyond the pure Parker solar wind, which motivate much of the ongoing research in the solar wind
\rightarrow Important for Sun-Earth interaction
\rightarrow "Laboratory" for studying fundamental plasma processes

Parker Solar Probe

Interstellar Probe

